Extensions 1→N→G→Q→1 with N=C2 and Q=C22×C3⋊Dic3

Direct product G=N×Q with N=C2 and Q=C22×C3⋊Dic3
dρLabelID
C23×C3⋊Dic3288C2^3xC3:Dic3288,1016


Non-split extensions G=N.Q with N=C2 and Q=C22×C3⋊Dic3
extensionφ:Q→Aut NdρLabelID
C2.1(C22×C3⋊Dic3) = C22×C324C8central extension (φ=1)288C2.1(C2^2xC3:Dic3)288,777
C2.2(C22×C3⋊Dic3) = C2×C4×C3⋊Dic3central extension (φ=1)288C2.2(C2^2xC3:Dic3)288,779
C2.3(C22×C3⋊Dic3) = C2×C12.58D6central stem extension (φ=1)144C2.3(C2^2xC3:Dic3)288,778
C2.4(C22×C3⋊Dic3) = C2×C12⋊Dic3central stem extension (φ=1)288C2.4(C2^2xC3:Dic3)288,782
C2.5(C22×C3⋊Dic3) = C62.247C23central stem extension (φ=1)144C2.5(C2^2xC3:Dic3)288,783
C2.6(C22×C3⋊Dic3) = D4×C3⋊Dic3central stem extension (φ=1)144C2.6(C2^2xC3:Dic3)288,791
C2.7(C22×C3⋊Dic3) = Q8×C3⋊Dic3central stem extension (φ=1)288C2.7(C2^2xC3:Dic3)288,802
C2.8(C22×C3⋊Dic3) = D4.(C3⋊Dic3)central stem extension (φ=1)144C2.8(C2^2xC3:Dic3)288,805
C2.9(C22×C3⋊Dic3) = C2×C625C4central stem extension (φ=1)144C2.9(C2^2xC3:Dic3)288,809

׿
×
𝔽